Home > Members > Magnificent Members > Schroder, André

Schroder, André

CNRS Scientist

Tel : +33 (0)388414057
Fax : +33 (0)388414099
email: schroder[at]unistra.fr

Research activities

PNG - 129.3 kb
PNG - 158.2 kb
PNG - 150.6 kb

1-GUVs grow through bulge merging exclusively

Electroformation is well known and widely used to grow Giant Unilamellar Vesicles from a hydrated, surface spread, pre-oriented phospholipid film. We have shown, using dual probe labelling and electroformation in presence of first generation GUVs or LUVs, that GUVs grow from the spread stack without any membrane fusion event. Hence, merging of connected buds is now proven to be the only mechanism at play during GUV growing.

2-Hydroperoxydation-induced lipid area increase
 (in bilayer geometry)

Hydroperoxidation of a phospholipid tail through a chemical reaction with a singlet oxygen 1O2 leads to the grafting of an OOH group per insaturation. When embedded in a bilayer oxidized lipids adopt a specific conformation, i.e. their OOH-bearing chain(s) tend to kink, positioning the OOH group closer to the water interface. We measured for the first time the average area increase of DOPC (≈18%) and POPC (≈14%) bilayers upon hydroperoxidation, using wether micropipette aspiration, or Reflexion Interference Contrast microscopy. Our data have been confirmed by numerical simulations.

3-Grafted DNA stretching and confinement 
under an adhered phospholipid membrane

Single-end and double-end surface grafted λ-DNAs are pushed away, stretched and stapled during biotin-streptavidin mediated adhesion of a Giant Unilamellar Vesicle. At the end of the process the stretched DNAs remain confined in a membrane-substrate tunel, in a highly, close to fully stretched state. Interestingly the final shapes of the confined DNAs reveal that the two arms of a double-end grafted DNA are first radially stretched during the GUV adhesion process, as if they were independant, single-end grafted DNAs, up to a point corresponding on average to a degree of stretching of 0.5 of the DNA chain (1.0 corresponding to a fully stretched chain). Only at that point does the DNA chain start to adopt a loop shape.



Weinberger, A., Walter, V., MacEwan, S. R., Schmatko, T., Muller, P., Schroder, A. P., et al. (2017). Cargo self-assembly rescues affinity of cell-penetrating peptides to lipid membranes. Sci Rep, 7, 43963.
toggle visibility


Micheletto, Y. M. S., Marques, C. M., Silveira, N. P. da, & Schroder, A. P. (2016). Electroformation of Giant Unilamellar Vesicles: Investigating Vesicle Fusion versus Bulge Merging. Langmuir, 32(32), 8123–8130.
toggle visibility
Micheletto, Y. M. S., Moro, C. F., Lopes, F. C., Ligabue-Braun, R., Martinelli, A. H. S., Marques, C. M., et al. (2016). Interaction of jack bean (Canavalia ensiformis) urease and a derived peptide with lipid vesicles. Colloids Surf B Biointerfaces, 145, 576–585.
toggle visibility


Aoki, P. H. B., Schroder, A. P., Constantino, C. J. L., & Marques, C. M. (2015). Bioadhesive giant vesicles for monitoring hydroperoxidation in lipid membranes. Soft Matter, 11(30), 5995–5998.
toggle visibility


Arranja, A., Schroder, A. P., Schmutz, M., Waton, G., Schosseler, F., & Mendes, E. (2014). Cytotoxicity and internalization of Pluronic micelles stabilized by core cross-linking. Journal of Controlled Release, 196, 87–95.
toggle visibility
Marques, C., Weinberger, A., MacEwan, S., Schmatko, T., Schroder, A., & Chilkoti, A. (2014). Cargo Self-Assembly Controls Affinity Of Cell-Penetrating Peptides To Lipid Membranes. Journal Of Peptide Science, 20, S282.
toggle visibility
Sun, Y., Marques, C. M., & Schroder, A. P. (2014). Adhesion of giant unilamellar vesicles on double-end grafted DNA carpets. European Physical Journal-Special Topics, 223(9), 1755–1769.
toggle visibility
Weber, G., Charitat, T., Baptista, M. S., Uchoa, A. F., Pavani, C., Junqueira, H. C., et al. (2014). Lipid oxidation induces structural changes in biomimetic membranes. Soft Matter, 10(24), 4241–4247.
toggle visibility


Weinberger, A., Tsai, F. - C., Koenderink, G. H., Schmidt, T. F., Itri, R., Meier, W., et al. (2013). Gel-Assisted Formation of Giant Unilamellar Vesicles. Biophysical Journal, 105(1), 154–164.
toggle visibility


Franco, I. E., Lorchat, P., Lamps, J. - P., Schmutz, M., Schroder, A., Catala, J. - M., et al. (2012). From chain collapse to new structures: spectroscopic properties of poly(3-thiophene acetic acid) upon binding by alkyl trimethylammonium bromide surfactants. Langmuir, 28(10), 4815–4828.
toggle visibility
Haluska, C. K., Baptista, M. S., Fernandes, A. U., Schroder, A. P., Marques, C. M., & Itri, R. (2012). Photo-activated phase separation in giant vesicles made from different lipid mixtures. Biochimica Et Biophysica Acta-Biomembranes, 1818(3), 666–672.
toggle visibility


Nam, G., Hisette, M. L., Sun, Y. L., Gisler, T., Johner, A., Thalmann, F., et al. (2010). Scraping and Stapling of End-Grafted DNA Chains by a Bioadhesive Spreading Vesicle to Reveal Chain Internal Friction and Topological Complexity. Prl, 105(8), 088101.
toggle visibility


Campillo, C. C., Schroder, A. P., Marques, C. M., & Pepin-Donat, B. (2009). Composite gel-filled giant vesicles: Membrane homogeneity and mechanical properties. Materials Science & Engineering C-Biomimetic And Supramolecular Systems, 29(2), 393–397.
toggle visibility
Mertins, O., da Silveira, N. P., Pohlmann, A. R., Schroder, A. P., & Marques, C. M. (2009). Electroformation of Giant Vesicles from an Inverse Phase Precursor. Biophysical Journal, 96(7), 2719–2726.
toggle visibility
Riske, K. A., Sudbrack, T. P., Archilha, N. L., Uchoa, A. F., Schroder, A. P., Marques, C. M., et al. (2009). Giant Vesicles under Oxidative Stress Induced by a Membrane-Anchored Photosensitizer. Biophysical Journal, 97(5), 1362–1370.
toggle visibility
Tauk, L., Schroder, A. P., Decher, G., & Giuseppone, N. (2009). Hierarchical functional gradients of pH-responsive self-assembled monolayers using dynamic covalent chemistry on surfaces. Nature Chemistry, 1(8), 649–656.
toggle visibility


Campillo, C. C., Schroder, A. P., Marques, C. M., & Pepin-Donat, B. (2008). Volume transition in composite poly(NIPAM)-giant unilamellar vesicles. Soft Matter, 4(12), 2486–2491.
toggle visibility
Haluska, C. K., Schroder, A. P., Didier, P., Heissler, D., Duportail, G., Mely, Y., et al. (2008). Combining Fluorescence Lifetime and Polarization Microscopy to Discriminate Phase Separated Domains in Giant Unilamellar Vesicles. Biophysical Journal, 95(12), 5737–5747.
toggle visibility
Hisette, M. L., Haddad, P., Gisler, T., Marques, C. M., & Schroder, A. P. (2008). Spreading of bio-adhesive vesicles on DNA carpets. Soft Matter, 4(4), 828–832.
toggle visibility


Caetano, W., Haddad, P. S., Itri, R., Severino, D., Vieira, V. C., Baptista, M. S., et al. (2007). Photo-induced destruction of giant vesicles in methylene blue solutions. Langmuir, 23(3), 1307–1314.
toggle visibility
Durian, D. J., Bideaud, H., Duringer, P., Schroder, A. P., & Marques, C. M. (2007). Shape and erosion of pebbles. Physical Review E, 75(2), 021301.
toggle visibility


Durian, D. J., Bideaud, H., Duringer, P., Schroder, A., Thalmann, F., & Marques, C. M. (2006). What is in a pebble shape? Phys. Rev. Lett., 97(2), 4 pp.
toggle visibility


Fa, N., Marques, C. M., Mendes, E., & Schroder, A. P. (2004). Rheology of giant vesicles: A micropipette study. Phys. Rev. Lett., 92(10), 4 pp.
toggle visibility
Site powered by SPIP | | Site Map | Follow site activity RSS 2.0
Graphic design (c) digitalnature under License GPL